
MATHEMATICS OF COMPUTATION
VOLUME 40, NUMBER 162
APRIL 1983, PAGES 709-714

A Performance Analysis of a Simple
Prime-Testing Algorithm*

By M. C. Wunderlich

Abstract. This paper gives an empirical performance analysis of a prime-proving program
designed and implemented by the author and J. L. Selfridge in 1974. The algorithm has been
commonly referred to as the "down algorithm" because of its recursive characteristics. It is
shown, among other things, that of the 2270 primes tested, 94% of them were proved in less
than 3 seconds of IBM 360/67 time per number.

Introduction. There is a variety of algorithms available for using a computer to
prove numbers prime. See, for example, H. C. Williams [6]. The most straightfor-
ward method is to divide the number by each prime which is less than its square
root. If none of the remainders is zero, the number is a prime. This method has the
advantage of being very easy to program but it uses a prohibitive amount of
computer time for numbers exceeding 10 digits in length. Also, the proof is
nonconstructive in that the only way to verify the correctness of the proof is to
repeat the calculation with another program perhaps on another computer. Recently,
Michael 0. Rabin [3] and R. Solovay and V. Strassen [5] have published probabilis-
tic algorithms for testing primality. These are quick, relatively easy to program tests
which can assert positively that a number n is composite, but when it asserts the
primality of n, it does so with a very small probability of error. That is, n is asserted
to be prime by a procedure that on the average will make no more than one mistake
in 21' applications. While these procedures can be useful in producing large
collections of "essentially" composite-free numbers, they are not able to provide the
mathematician with a conclusive proof of the primality of a single value of n. In
1975, J. L. Selfridge and the author [4] designed and implemented a program for
prime proving which is not probabilistic and is effective for numbers between 10 and
35 decimal digits in length. In this note, we give a performance analysis of this
algorithm based on the results of using the program on a collection of 2270 numbers
in this range.

The Algorithm. For a detailed description of the program and the algorithm the
reader should consult [4], but for completeness, we will state the two relevant
theorems. Their proofs can be found in [1].

THEOREM 1 (PROTH, POCKLINGTON, LEHMER). If N - 1 = 2Vp lpa2 ... pakC1,

where Cl has no prime factors less than B and 2Vpalpa2 ... pakB > NK, then N is a
prime if the following two conditions hold for any choices of bi.

Received April 20, 1980; revised February 8, 1982.
1980 Mathematics Subject Classification. Primary 10A25.
*The research for this paper has been supported in part by the Air Force Office of Scientific Research.

(1983 American Mathematical Society

0025-5718/82/OO0-0990/$02.25

709

710 M. C. WUNDERLICH

(i) (b(N-l)/2p, +1, N) 1and bN- 1)/2--1, mod N,fori ,...,k,
(ii) (b(N-l)/2C ? 1, N) = 1 and boN-l)/2 = -1, mod N.

If we are given two positive integers Pi and Q1, the Lucas sequence {V(i)} is
defined by

Vo(j) = 2, Vl(J) = PJ, Vu(J), PjV(j) -QV(_)I, u > 1.

THEOREM 2 (BRILLHART, LEHMER, SELFRIDGE). Suppose
(1) N- 1 = 2vp" ... pZACi and

(2) N + 1 = 2wq * ... qC2.
(3) C1 and C2 have no prime factors less than B.
(4) T1T2max(T,, T2)B3 > 2N, where T1 = (N- 1)/CC and T2 -(N + 1)/C2.
Then N is prime if conditions (i) and (ii) hold in Theorem 1 for some choice of

b0, b,. .. ,bk, and for some choice of PO, P1,. . . ,Pi, and QO, Q1,. . . , Ql, the following
conditions hold:

(iii) (K(J) I)/2qj N) 1, V((1)/2 0, mod N, j =1,...,1,

(iv) (N+()1/2C,, N) = 1, V()1)/2-0, modN,

where QJ and 1 - 4QJ are quadratic nonresidues mod N and D = p2- 4Qj is fixed
forj = 0,1,...,1.

We will now give a brief sketch of the "down algorithm" for proving the primality
of N. The procedure consists of two parts which we call the factorization part and the
final test part. In the factorization part, we divide N + 1 and N - 1 simultaneously
by the primes (or by easily calculated numbers which include the primes) which are
less than the factor bound B. This produces the factorizations

(5) N -1 = 2VpjlpkC, N + 1 = 2wqP. q/3C2.

The bound B is chosen large enough so that either one of the following conditions
hold.

(a) (PPL) 2Vp- ... p'AB >VFN.
(b) (COM) If T, and T2 are defined as in (4), then

TIT2 max(T1, T2)B3 > 2N.

Condition (a) is abbreviated PPL because it is based on Theorem 1 and condition (b)
is labeled COM because it is based on the "combined" Theorem 2.

If condition (a) holds, the second part of the program completes the proof by
performing final tests on the p's by verifying conditions (i) and (ii) of Theorem 1. If
condition (b) holds, the final tests consist of verifying conditions (i) through (iv) of
Theorem 2. These tests are somewhat difficult to program but are very fast in
execution. The strategy for obtaining the proof can be loosely described as follows:

Step 1. Factor N + 1 and N - 1 until B = 300300. (Note that this implementa-
tion differs in this respect from the one described in [4].) If a complete factorization
of either N - 1 or N + 1 is obtained along the way, the factoring is stopped and the
proof is obtained by performing the appropriate final tests. Otherwise, we know that
(4) is satisfied where Cl and C2 are possibly composite, that is, Cl > pk and C2 > q7.

Step 2. If condition (a) holds, we perform the final tests for PPL. If not, we test
condition (b) and if this is satisfied, we complete the proof by performing the COM

A SIMPLE PRIME-TESTING ALGORITHM 711

final tests. Otherwise, we test C1 and C2 for being a probable prime (PRP). This is
done by determining whether b(c,- 1)2 ?+ 1, mod Ci, for i = 1,2. If neither C1 nor
C2 is a PRP, go to Step 3. Otherwise let C be the smaller of the two which is a PRP
and complete the final tests for the prime proof of N assuming that C is a prime. We
then set N equal to C and repeat the program starting at Step 1. This is known as
6"going down" on either the minus side or the plus side depending on whether
C = Cl or C2, respectively.

Step 3. Both Cl and C2 are composite. We continue factoring N + 1 and N - I
until we reach B > 107. If we have already gone down, we stop factoring when we
reach B > 106. Whenever a factor is found, or whenever B is sufficiently large for a
combined proof, the final tests are performed and the program stops. Otherwise, the
program fails for that particular value of N.

Remarks. 1. Factoring was done by the fast factor program described in [7]. It
divides N - 1 and N + 1 simultaneously by numbers relatively prime to 30030 =

2* 3 5- 7 7 11 . 13 and stops at a multiple of 30030 whenever the factorization is
complete.

2. The initial factor bound B = 300300 was chosen to optimize the procedure for
our particular computer. It takes about as much time to do the final tests as it does
to factor to 300300 and choosing a smaller value would not appreciably speed up the
process.

3. Performing the final tests often requires changing the base b in PPL or changing
the values P and Q in the computation of the Lucas sequences in COM. This, as well
as total base failures, occurs more frequently for small factors p and q, and therefore,
choosing a larger value for B also reduces the frequency of base changes and the
probability of base failure.

4. If the factor bound of B = 106 has been reached with the original number N,
the program factors to B= 107 before declaring a failure. This takes about 2
minutes of CPU time on our machine. However, if the program has gone down and
we factor up to B = 106 on one of the lower level numbers in the recursive chain, we
stop the program. Generally, other less expensive options are available in this case to
complete the factorization.

The Analysis. The primes used in our sample were a by-product of another
number-theoretic investigation. They were obtained in the iteration of the number-
theoretic function a(n) - n where a(n) is the sum of the divisors of n. Column 1 of
Table 2 shows their digit distribution. Of the 2270 numbers tested, 2214 of them
(97.53%) were proved prime without factoring beyond the bound B = 300300. For
numbers to be in this category, they must satisfy one of the following conditions:
(We denote by pl(x) and p2(x) the largest and second largest prime dividing x,
respectively.)

1. p (N- 1) < 3003002 ?9 X 1010 and p2(N- 1) < 300300.
2. p I(N + 1) < 3003002 ?9 X 1010 and P2(N + 1) < 300300.
3. If T1 is the product of all the prime factors of N - 1 which do not exceed

300300, we have

T, > N /300300 .000000333 N.

4. If T2 is the product of all the prime factors of N + I which do not exceed

712 M. C. WUNDERLICH

300300, we have

(T1 T2 max(T1, T2))) > (2 N/3003003) / .000000009 N.

5. p2(N - 1) < 300300 but p I(- 1) > 3003002.

6. p2(N + 1) < 300300 butpI(N + 1) > 3003002.
Conditions 1 and 3 produce a simple PPL proof and accounted for 784 of our

examples or about 34.5% of our sample. Conditions 2 and 4 produced a COM proof
which accounted for 1357 of our examples or about 59.8%. The COM proofs are
much more numerous than PPL despite the fact that the strategy will choose PPL
over COM, if it has a choice. This is because normally condition 4 is much easier to
satisfy with the same value of B than is condition 3. If we assume that T2 T
(which is only true in the mean), condition 4 can be written

3
T1 > .0000042XN.

Thus for the same value of B, it is clear that condition 4 will be satisfied more often
than condition 3.

Conditions 5 and 6 produced proofs which went down on the minus and plus side,
respectively. Down-minus accounted for 54 proofs of 2.4% of the sample and
down-plus accounted for 28 proofs or 1.2%. Five numbers in our sample went down
twice before the proof was obtained. After going down, the proof of the final
number in the recursive chain was performed by PPL in 32 cases and by COM in 50
cases.

Numbers in the first four categories all take about the same amount of factoring
time, which is about 2 seconds on the IBM 360, model 67. Of course, each time the
proof goes down, the program must factor up to 300,300 for the new prime-proof in
the recursion. Thus, going down once doubles the factoring time and going down
twice triples it. The final test time varies considerably but, as mentioned before, the
PPL tests take about as much time as factoring to 300300 and the COM tests take
about twice as much time.

Of the remaining 56 numbers, 34 were factored beyond 300300 to provide a
bound sufficient for a COM proof; for 16 a factor beyond 300300 was found and the
numbers proved prime. Finally, 6 numbers failed after factoring to 107. Table 1
summarizes the numbers in the first two categories.

TABLE 1

Factored to a
Factored to: bound for COM Found a factor

600,600 11 3
900,900 10 4

1,201,200 1 0
1,501,500 0 2
1,801,800 3 3
2,102,100 0 1
4,204,200 7 1
6,306,300 0 1
8,408,400 0 0

10,030,020 1 1

A SIMPLE PRIME-TESTING ALGORITHM 713

Of the factors found, 8 were of N - 1 and 8 were of N + 1 but there were 5 PPL
proofs as compared to 11 COM proofs. It is common, therefore, for a large factor of
N - 1 to produce sufficient material for a COM proof but insufficient for PPL.

The six numbers which failed factored to 107 without obtaining enough material
for a proof. Three of them, having 31, 32, and 28 digits, required factor bounds of 16
million, 22 million, and 23 million, respectively. The proofs were obtained by forcing
the program to factor all the way up to its required bound for a COM proof. Each of
these proofs executed in under 5 minutes of execution time. The other three, having
25, 33, and 34 digits, required much larger factor bounds but had cofactors of 24, 30
and 31 digits, respectively. These were factored using a continued fraction routine [2]
and one of the two factors was supplied to the program as additional input, called a
hint. Whenever a factor p was supplied to the down program as a hint, the algorithm
would attempt to divide p into Cl and C2 after completing Step 1. This would have
the effect of reducing the size of Cl or C2 in (5) allowing one of the conditions (a) or
(b) to hold.

TABLE 2

DOWN BASE FAIL
1 2 3 4 5 6 7 8 9 10 11 12

DIGITS PRL COM NOPROOF + - > 1 LF LB B PQ > I

Total Sample 2270 812 1451 6 54 30 5 17 33 98 29 12
Percent 100% 35.8 63.9 .3% 2.4 1.3 .2 .7 1.5 4.3 1.3 .5

10 8 8 0 1
11 5 4 1 1

12 11 5 6
13 48 15 33 1

14 79 30 49 5
15 102 42 60 3 1

16 139 67 72 5
17 154 66 88 5

18 152 73 79 8
19 181 69 111 I 5 1 1

20 200 71 129 1 1 5 1 1
21 178 73 105 3 2 8 1 1

22 170 58 112 4 2 3 7 2 2
23 173 58 115 6 1 1 1 2 10 2 1

24 148 54 94 8 4 1 1 2 8 1 1
25 126 34 91 1 9 7 1 2 3 7 3 1

26 116 30 86 4 3 3 5 3 5 2
27 82 21 61 2 2 4 2 2 1

28 72 17 54 1 3 6 3 1 3 2
29 41 3 38 4 2 1 2 4 3 3 1

30 32 4 28 3 2 1 1
31 16 3 12 1 3 2 1 2

32 14 2 1 1 1 1 1 2 2 1
33 14 4 9 1 2 2 1 1 1 2

34 8 1 6 1 1 1 1
35 1 0 1

714 M. C. WUNDERLICH

Table 2 gives a summary of the information discussed in this paper by digit size.
Columns 2 and 3 give the number of proofs which use PPL or COM in the last stage
of the recursion chain. Thus, if a 28 - digit number went down on the plus side and
completed the proof with PPL, it would be counted in column 3 as PPL and not
COM. Columns 5, 6, and 7 indicate the number of proofs which went down, and
columns 8 and 9 tabulate the proofs which needed factoring beyond 300300 by digit
size either to find a large factor (LF) or to produce a large bound (LB). Columns 10,
1 1, and 12 tabulate the proofs which required base changes.

Department of Mathematical Sciences
Northern Illinois University
DeKalb, Illinois 60115

1. JOHN BRILLHART, D. H. LEHMER & J. L. SELFRIDGE, "New primality criteria and factorizations of
21' + I,- Math. Comp., v. 29, 1975, pp. 620-647.

2. MICHAEL A. MORRISON & JOHN BRILLHART, "A method of factoring and the factoring of F7," Math.
Comp., v. 29, 1975, pp. 183-205.

3. MICHAEL 0. RABIN, "Probabilistic algorithm for testing primality," J. Number Theorv, v. 12, 1980,
pp. 128-138.

4. J. L. SELFRIDGE & M. C. WUNDERLICH, Anl Efficient Algorithm for Testing Large Numbers for
Prinialitv, Congressus Numeratium XII, Proc. 4th Manitoba Conf. on Numerical Math. (Winnipeg, 1973),
Utilitas Math., Winnipeg, 1974, pp. 109-120.

5. R. SOLOVAY & V. STRASSEN, "A fast Monte-Carlo test for primality," SIAM J. Comput., v. 6, 1977,
pp. 84-85.

6. H. C. WILLIAMS, " Primality testing on a computer," Ars Combin., v. 5, 1978, pp. 127-185.
7. MARVIN C. WUNDERLICH & J. L. SELFRIDGE, "A design for a number theory package with an

optimized trial division routine," Comm. ACM, v. 17, 1974, pp. 272-276.

	Cit r254_c256:
	Cit r252_c254:

